

CMPE322/326 Assignment 3 - Feature
Proposal

FlightGear

Submitted By: Group 20
Jasper Lim, Laurie Yuzichuk, Jordan Herzstein, Campbell Love,

Christopher Seguin Bianchi, Cameron Bennett

Abstract ... 1

Introduction ... 2

Overview of New Feature ... 2

SAAM Analysis .. 3

Stakeholders ... 3

Developers ... 3

Users .. 3

Architecture Choice ... 4

Key Attributes .. 4

Impact on Subsystems .. 4

ATC .. 5

Add-ons & Red Griffin ATC .. 5

Input ... 5

Impact on Conceptual & Concrete Architecture .. 5

Impact on Conceptual Architecture .. 6

Impact on Concrete Architecture .. 7

Potential Risks and Limitations .. 7

Testing ... 8

Sequence Diagrams .. 9

Use Case #1 .. 10

Use Case #2 .. 11

Lessons Learned ... 12

Conclusion ... 12

Data Dictionary ... 13

References ... 13

1

Abstract
 This report aims to outline a potential feature proposal to FlightGear by the group,
by analyzing existing features and community discussions to add an innovation to the
system where the need exists. From the group’s research and feedback, a feature that
would intersect ATC with a speech to text (STT) module and LLM functionality would
modernize the current ATC subsystem within FlightGear. Specifically, the group has
decided to add STT to the existing Red Griffin ATC open source add-on to add a new option
for communicating with the ATC as well as LLM functionality for both local and external API
LLMs to create flexibility and further immersion with FlightGear’s ATC. This system was
decided on after researching other existing add-ons for the ATC system, as well as reading
forums of users who want to enact STT functionality within some of these existing systems.

Through SAAM analysis, this report identifies key stakeholders in the project, the
necessary architectural style for the feature proposal, and key attributes that need to be
considered. In terms of stakeholders, developers will have to consider through the
inclusion of LLMs all the complexities that come with it, including model training,
inference, and optimization requiring efficient algorithms. Users require that the system be
fast, responsive, and accurate, but may be confronted with the resource consumption of a
LLM being too much of a strain on performance, to the point of being debilitating for their
hardware. Conclusively, a Client-Server architecture model should be adopted, as it is the
most logical layout in terms of arranging workload for the components of an LLM.
Additionally, Client-Server architecture also closely mirrors the established conceptual
architecture of FlightGear.

In terms of impact on subsystems and FlightGear's architecture, the ATC and Input
modules will be affected the most. The existing ATC subsystem must be able to distinguish
good and bad STT input and generate an appropriate response. For Input, the subsystem
must become able to process microphone input. In terms of the conceptual and concrete
architecture, FlightGear's Client-Server network must be able to accomodate Numen STT
data, and may have to be able to interface with an external API for LLM processing. The ATC
module would be modified by the presence of our enhanced Red Griffin add-on.

The largest drawbacks involve the drain on performance depending on whether the
LLM is local, or whether an external API is used. The latter option brings security and data
privacy concerns to the user. In order to optimize this and ensure functionality, rigorous
testing needs to be conducted on STT performance with the Red Griffin ATC interface, the
text processing capability of the LLM, and the integration of both aspects with each other.

2

Introduction
FlightGear is a free, open-source flight simulator in development since 1997,

supported on multiple OS's including Windows, MacOS, Linux, IRIX, and FreeBSD [1].
FlightGear has been used in academic research, education, training, and for recreational
purposes [1]. Previously, we covered the conceptual and concrete architecture of
FlightGear. It was determined through the mapping of the project, specifically
dependencies such as the FDM sub-module using Sci-tools Understand that there were
some divergences between the conceptual and concrete architecture. Thus, the
conceptual architecture was adjusted to reflect the gaps with our concrete architecture in
the second report.

In this report we will introduce a new potential feature to the project. In particular,
the team was interested in an intersection between Air Traffic Control (ATC), voice speech
to text recognition, and Large Language Model (LLM) functionality. The latter two features
are not available in any FlightGear addon, and represent a key element of the flight
simulation experience that is currently lacking. With takeoff and landing from various real
models of airports being a prominent feature of FlightGear, it is reasonable to enhance the
immersion and real-training applications by enabling the player to simulate real verbal
communication with existing ATC systems. Existing FlightGear specific add-ons,
community discussion, and other software projects were researched to include in our
proposal.

Overview of New Feature
The enhancement of FlightGear will be an add-on for the ATC subsystem that will

allow voice commands for ATC using language learning models that can run locally on the
player’s computer. Currently FlightGear has a few add-ons that have voice and speech
synthesis when communicating with ATC such as ATC-pie, Spoken ATC, and Red Griffin
that exist without the use of LLMs [2] [3] [4]. LLMs could improve the immersion of the
simulator while also providing flexibility for players and developers to train and use their
own models. This can also be beneficial for non-native English-speaking players to run
local models that employ their native tongue, increasing the accessibility of FlightGear for
an international audience.

To introduce this system into FlightGear’s existing architecture we plan on using
some existing add-ons as dependencies as they already have voice features for ATC such
as the aforementioned ATC-pie, Spoken ATC, and Red Griffin. We have decided to develop
our proposal based on the Red Griffin ATC specifically. Red Griffin already uses the

3

keyboard to communicate directly with the ATC, though it does not have functionality to
deliver speech-to-text capabilities to communicate with ATC [5]. Since 2023, members of
the community have been discussing adding such a feature to an existing ATC add-on, in
which some have suggesting allowing a project such as Numen to operate with an existing
add-on [5] [6]. Numen is a voice control for hands-free computing, which is ideal for a STT
module which can be integrated with existing FlightGear add-ons [6]. We will add speech-
to-text functionality to Red Griffin using the existing Numen project, and then optionally
allow LLM functionality to integrate into the ATC for flexibility with key words when
communicating with ATC.

SAAM Analysis
 The following includes a Software Architecture Analysis Method (SAAM) analysis for
the proposed feature, including identifying stakeholders, chosend architecture, and key
attributes.

Stakeholders
The stakeholders involved in integrating voice commands for ATC using LLMs into

FlightGear which mainly encompass developers and players. Developers are tasked with
ensuring software compatibility, security, and reliability while integrating the voice
command feature. Users, including pilots and enthusiasts, prioritize usability, security,
and performance in their interaction with the simulator.

Developers
Developers play a crucial role in integrating voice commands using LLMs into

FlightGear. They face the challenge of ensuring software compatibility with existing
systems and libraries, especially considering the computational resources required for
real-time voice recognition and processing. The use of LLMs introduces complexities in
model training, inference, and optimization, requiring developers to implement efficient
algorithms and data structures to handle large-scale language models effectively.
Additionally, developers must address security concerns related to voice data privacy
when using external API’s.

Users
Users, particularly pilots and enthusiasts, are focused on usability, security, and

performance when interacting with FlightGear’s voice command feature. The
computational challenge here lies in providing a seamless and responsive user
experience, which necessitates optimizing the speed of LLMs and improving the accuracy

4

of voice recognition in the STT module. Users expect the system to accurately interpret and
execute voice commands in real time, requiring efficient algorithms for voice processing
and command execution without causing noticeable delays or mistakes in interpretation.
Users also should be concerned with the resource usage that would be consumed by the
LLM, which could represent a significant drop in performance, or be untenable to run at all
by their machine’s hardware if the LLM is local.

Architecture Choice
The chosen architecture for the enhancement would be a Client-Server

architectural style. This chosen architecture would make sense as the RGATC add-on
would act as our client with keyboard/STT input functionality, whereas the “server”
architecture could be the LLM it communicates with. This is clear in the case in which an
external service with an API is used, however, even if the LLM is run locally it can act as a
server which services the RGATC add-on.

Key Attributes
Key attributes to consider during the integration process include maintainability,

testability, performance, and scalability. Maintaining the voice command system's
codebase should be prioritized for ease of updates and modifications without disrupting
overall functionality. Rigorous unit testing methods should be employed to verify the
reliability and efficiency of voice commands. Additionally, performance profiling tools can
be utilized to identify and address any bottlenecks that may affect system performance.
Scalability testing is crucial to assess the system's ability to handle varying loads of voice
commands effectively when working in multiplayer environments.

 By addressing these attributes and employing appropriate methods such as
comprehensive code documentation, unit testing, performance profiling, and scalability
testing, FlightGear can successfully integrate voice commands using LLMs into its
architecture while ensuring a well-rounded approach to system development and
enhancement.

Impact on Subsystems
The main subsystems that will be affected are those that relate to ATC interactions

in FlightGear, such as ATC and add-ons. However, some subsystems such as Input will be
lightly adapted in order to properly integrate the new feature.

5

ATC
Depending on the input received from the user that is then converted from speech

into text commands, the ATC subsystem will need to be able to properly understand the
input and must output a response accordingly back to the user based on said input.

Additionally, when the speech to text converted response is either not coherent or
an irrelevant command, the ATC must be able to recognize this and thus will report back to
the user that their message has not been understood and then prompt them to repeat their
message more clearly. For instance, when given a reply that the program does not
understand, the ATC could reply back with “Transmission is weak and distorted, over” or
“Say again, over”. This will further aid in simulating real life radio communication and adds
to the immersion of the user.

Add-ons & Red Griffin ATC
Since the enhancement would build upon the preexisting add-on, Red Griffin ATC, it

(and thus the Add-on subsystem) must be able to access the user speech input in order to
convert it to text. From there, Red Griffin ATC will map the speech-to-text to established
requests that can be given to the ATC, such as requesting an engine start or to have the
user’s aircraft taxied on or off the runway.

Input
The Input subsystem will need to be able to register speech from the user, which

will be relayed to and used by the added speech to text component. Since currently
FlightGear’s Input subsystem only uses keyboard, mouse, and buttons as a source of
input, a microphone input component within the subsystem must be added in order to do
so.

Impact on Conceptual & Concrete Architecture
This section will analyze the impact the proposed feature will have on both the conceptual
and concrete architecture of FlightGear.

6

Impact on Conceptual Architecture
As described in the team’s first report, the

conceptual architecture is a combination of three
architectural styles: High-Level Architecture,
Model-View Controller, and Client-Server
architecture. In the conceptual architecture, the
client interfaces with the network through UDP. This
connects to the FDM server, and through a network
manager interfaces with flight dynamic
calculations, ATC simulation, AI object control,
scenery update, audio, and rendering.

The proposed addition to the Red Griffin ATC of adding speech-to-text using Numen
and incorporating LLM functionality will impact the conceptual architecture in various
ways. One such way this will be impacted is through the integration with the network
manager and UDP communications. All network interactions will need to be updated to
handle speech-to-text features. This can be accomplished either through integrating STT
functionality into the existing network flows, or expanding the UDP-based communication
protocols to support the additional data that STT brings. If the feature uses an external API
for LLM processing, this would also incur much more network traffic. The Client-Server
interactions would similarly need to be updated to accommodate the added data flow
from speech-to-text and LLM functionalities. Finally, the ATC simulation would use the Red
Griffin ATC add-on instead of the base ATC, along with the proposed changes of STT and
LLM integration.

Figure 1: Conceptual Architecture of FlightGear from a
previous report.

7

Impact on Concrete Architecture
 The conceptual architecture of the
FlightGear system was outlined in the team’s
second report. As discussed in the previous
section, it involves various subsystems
including FDM, Viewer and GUI, Aircraft,
Autopilot, Environment and Scenery, Input and
Systems, Network, Sound, and Add-ons and
Scripting.

 The proposed additions would incur
various modifications to the existing elements
of the architecture. One area that would need
to be modified is the ATC module. Since the
Add-ons subsystem will feature the new ATC,
Red Griffin ATC, the main ATC subsystem will
not need to interface with the other
components. The dataflow between all the subsystems will also need to be updated to
include additional dependencies such as the Numen STT and potentially external LLMs.

 New subsystems would also need to be incorporated into the architecture. One
such subsystem is the speech recognition engine that interfaces with Numen. This would
be the component that processes the STT, taking audio from Input and Systems and
processing it into text. Another subsystem that would be added is for language processing.
This would integrate the LLM functionalities that have been described in the proposed
additions. A data interface would also be needed to manage the flow of data between the
two mentioned subsystems, enabling synchronization and reliable data transmission.

Potential Risks and Limitations
The integration of an LLM powered ATC system presents many new and interesting

opportunities in theory, however, poses many risks and limitations. The most obvious risk
is that LLM’s are computationally expensive and will consume a lot of processing power.
The player using this add-on thus has two options; rely on an external service with an API or
run their own model locally with their own GPU resources. While an external API would
allow the user to use none of their own GPU processing, it would be slower than running
the model locally. Using the example of ChatGPT, a player using the ChatGPT API would
have to communicate with the ChatGPT servers first before generating a response and

Figure 2: Concrete Architecture of FlightGear from a previous
report.

8

sending it back. Running the model locally would not have to rely on server response or
availability, however, would consume a lot of VRAM on the user’s GPU depending on the
model. Thus, this option would not be viable for users without a powerful GPU on their own
PC or would have to sacrifice accuracy (using smaller LLMs) for resources.

Another aspect to consider in terms of risk is data privacy. A lot of users do not trust
companies such as OpenAI and Google to hold their information and use it correctly, so
using their external LLM services can raise privacy concerns for them. Although the actual
audio recording isn’t being sent any external server, the output text is still being sent to
these servers and can be used to improve their LLM. Users don’t know where or how their
information is being used, hence the concern. This claim is backed up by International
Governments such as the Italian Digital Protection Authority (IDPA). The IDPA has raised its
concerns about Open AI’s data processing, specifically about if it complies with the bloc’s
General Data Protection Regulation (GDPR). These concerns focused on the legal basis of
collection and processing of personal data of training algorithms in the LLM, and the times
the AI tool produces inaccurate information about its users [7]. A solution to this could be
the use of a local LLM such as Mistral, which would limit these concerns and keep all the
information stored on the computer, removing some tensions on the data privacy
concerns. Mistral is Europe’s biggest contender for the AI global race, and “subscribes
itself to the idea that AI software should be open source” [8]. The idea of an open source
LLM matching FlightGear’s open-source nature will promote safe updates and reuse of the
product.

Another concern is while our proposal improves flexibility and ease of use of ATC
communication in the simulator, some accuracy might be sacrificed in using a speech to
text models with an LLM. LLM’s rely on a vast amount of training data to operate with
precision. While a system in which key words are identified to activate actions from the
ATC is less flexible, it is a lot more predictable than an LLM which might interpret things
incorrectly. Additionally, any speech to text program might hear certain words incorrectly
due to mic issues or not understanding certain accents. While these programs tend to
become more precise and robust over time, a keyboard is always going to act more
predictably than a person’s voice.

Testing
If this feature were to be implemented, there would be many different procedures

that could be conducted on the LLM component designed to integrate within Red Griffin’s
Air Traffic Control add-on. It will specifically focus on testing speech-to-text functionality

9

with the RGATC interface, testing of the LLM with text input only, and the integration of
these two components.

For Testing the STT component with the RGATC interface, there would be testing
involving Speech Recognition accuracy and Interface Compatibility. Testing if the speech is
being accurately transcribed into pilot voice commands in text is the primary problem.
Various voice inputs representing typical ATC commands would be provided to gauge the
system’s recognition accuracy under different conditions, such as background noises,
accents, and varying speech patterns. With the LLM, a text input validation would first need
to be done. The test would focus on the LLMs responsiveness and accuracy when provided
with text inputs directly, using different ATC commands and viewing the results the LLM
spits out to deem if it is accurate or not.

Once text-only input validation is up and running, interface compatibility between
the LLM and RGATC would be next. This would include testing from the recognized speech
to text output to be correctly interpreted and acted upon by the RGATC add-on, resulting in
appropriate ATC responses and interactions within the FlightGear environment.

Sequence Diagrams
Included in this section are two different use cases of the proposed feature

including use of the feature with and without an external LLM API.

10

Use Case #1

 illustrates a use case for the proposed enhancement, where the user speaks into
their computer’s microphone to communicate with the ATC and requests that their aircraft
be taxied onto the runway. The Input component registers the spoken input, which is then
passed onto the Speech-to-Text Manager and converted into text. From that generated
text, the Red Griffin ATC will map the text to a specific request that’s already been
implemented into Red Griffin ATC. That request is given to the ATC and will output the
appropriate response to the request back to the user.

Figure 3: Sequence diagram of using Speech-to-Text in order to communicate with the ATC to request a taxi onto runway.

11

Use Case #2

Figure 4 above depicts use case #2, where an external API is used for an LLM and is
integrated into Red Griffin ATC. Here, Red Griffin ATC would be calling the required
components needed when processing the user’s spoken input. Like in the previous use
case, the registered input is converted into text. However, in this instance, the LLM is used
in order to assess the converted text and more accurately understand the user’s request
regardless of minor discrepancies or synonyms used, which allows the system to be less
rigid in what is considered an accepted viable spoken input.

Figure 4: Sequence diagram of using LLM with Red Griffin ATC in order to process the request of starting engine.

12

Lessons Learned
When creating our proposal, we first considered creating an STT module with the

ATC where we didn’t believe it existed in FlightGear proper. With the suggestion of the
group’s TA and further research into the FlightGear wiki we learned that several add-ons
with some voice functionality were already developed by the community. In the
consideration of further innovation, we decided to expand our proposal from integrating a
STT module into the ATC to also including LLM functionality.

The group’s TA made sure to point out the many potential downsides a system that
includes both STT and an LLM together might create in terms of performance and
accuracy. To combat these issues modularity was a huge consideration in the creation of
the proposal so that both players and developers in the FlightGear community can decide
what aspects of FlightGear are most important for their use case: performance, flexibility,
accuracy and reliability, immersion, and data privacy. For example, if a user is only
concerned with performance and accuracy, they can keep their system as is without using
the design of our proposal at all. For the subset of players that want to push the immersion
of the simulation while being easy to use and without sending data to an external server,
the feature proposed can also work for them. The feature can be configured to run locally
on the system while using STT to run commands and an LLM to interpret the text flexibly to
depict ATC communications more realistically, increasing immersion. For players than
want to push immersion and ease of use but do not have the necessary local processing
power, external APIs exist and can be used to implement that functionality for them as
well.

Conclusion
Overall, we found that by extending the current FlightGear architecture through the

add-ons subsystem, we were able to add more immersive features to the ATC component
of FlightGear. In order to achieve this, we could rely on existing open source add-ons made
by the community, in this case Red Griffin ATC, to improve the system rather than creating
everything from scratch or add unnecessary complexity or instability to the core
components of FlightGear. The options and flexibility of the extension we are proposing
allows the player to decide how much they wish to use their ATC system with more
immersion and ease-of-use, or keep a reliable and low-resource intensive simulation.

Key stakeholders were recognized in the SAAM analysis, including developers and
players of FlightGear. We also decided on using a client-server architecture in which the
RGATC add-on acts as the client and any locally running LLM or external AI service such as

13

ChatGPT via their API can act as a server which services the RGATC add-on. Analyzing the
impact on conceptual architecture, we hypothesize the effect it would have on the
networking subsystem with the addition of STT as well as an external LLM incurring even
more network traffic. In terms of the concrete architecture, we include the impact it would
have on the existing ATC subsystem, as well as an additional STT subsystem that might be
added to the existing system. We also analyzed the potential risk factors that an add-on
such as this would have to consider, in particular performance and availability, privacy,
and accuracy. In terms of testing, we have considered employing the STT and LLM
functionality into RGATC separately before integration. Finally, we’ve shown two cases in
which the add-on can be used, including local usage and usage with an external LLM API.

Data Dictionary
ATC: Air Traffic Control

FDM: Flight Dynamics Mode

LLM: Language Learning Model

API: Application Programming Interface

Red Griffin ATC (RGATC): An open-source add-on for FlightGear’s ATC, what the proposal is
based on

ATC-Pie: An open-source add-on for FlightGear’s ATC

Spoken-ATC: An open-source add-on for FlightGear’s ATC

STT: Speech-to-text

References

[1] "FlightGear About," FlightGear, [Online]. Available: https://www.flightgear.org/about/.
[Accessed 19 02 2024].

[2] "ATC-pie," [Online]. Available: https://wiki.flightgear.org/ATC-pie.

[3] "Spoken ATC," [Online]. Available: https://wiki.flightgear.org/Spoken_ATC. [Accessed
12 April 2024].

14

[4] "Red Griffin ATC," [Online]. Available: https://wiki.flightgear.org/Red_Griffin_ATC.
[Accessed 12 April 2024].

[5] "Spoken ATC: Speech-to-text ?does it exist," [Online]. Available:
https://forum.flightgear.org/viewtopic.php?t=41522&p=412865. [Accessed 12 April
2024].

[6] J. Gebbie, "Numen Voice Control," [Online]. Available: https://numenvoice.org/.
[Accessed 12 April 2024].

[7] N. Lomas, "ChatGPT is violating Europe's privacy laws, Italian DPA tells OpenAI," 29
January 2024. [Online]. Available: https://techcrunch.com/2024/01/29/chatgpt-italy-
gdpr-
notification/#:~:text=AI%20model%20training%20lawfulness%20in,temporarily%20su
spended%20in%20the%20market.. [Accessed 12 April 2024].

[8] L. A. a. A. Satariano, "Europe's A.I. 'Champion' sets sights on tech giants in the US,"
The New York Times, 12 04 2024. [Online]. Available:
https://www.nytimes.com/2024/04/12/business/artificial-intelligence-mistral-france-
europe.html#:~:text=Mistral%20subscribes%20to%20the%20view,to%20copy%2C%
20tweak%20or%20repurpose. .

