CMPE322 Assignment 1 - Conceptual
Architecture

FlightGear

Submitted By: Group 20
Jasper Lim, Laurie Yuzichuk, Jordan Herzstein, Campbell Love,
Christopher Seguin Bianchi, Cameron Bennett

Contents

Y o1 1 T TP P PR PP TP PTOPION 1
INEFOAUCTION .ttt bbbt e bt e b e s bt e sae e st e et e e b e e beesbeesaeeeaseenbeenbeesaeesanenas 1
ATCRTEECTUIE ..ttt h e bt st st ettt e bt e s bt e sbeesae e e at e et e et e e sbeesaeesaeesabeeabeenbeenes 2
SYSEEM FUNCEIONAIILY .eeeiiiiiie ettt e e st e e e e e e e e sataeeesnbaeeesanseeeesnsneeeennn 2
LY== PO PPN 2
FDIM CHBNT. ettt ettt h ettt sttt e b e bt e s bt sae e e ae e et e e bt e sbeesaee st e sabeenbe e beesmeeenneentean 2
Networking and Multiplayer Capabilities:coucuieiieiiee e e e e e e 3
YA L= 0 T V70] [V o o PO RSP 3
Data FIOW @nd CONLIOLeiiiieiiieee ettt ettt ettt s e s bt e e s a b e e sabe e e sabeeebteesabeesabeeesabeeas 4
COMCUITBIICY e e e e e e e e e e e e e e e e e e s e e e s e e e e e e e s e e e sessaaasaassasasassssssassssssssssasassssssssssassssssssssssasasesanasasananns 6
Division Of RESPONSIDIITIESceeiiiieei i e te e e et e e e be e e e e e bee e e e e abaeeeennrenas 7
(60] 0Tl (V11 DO TSSO P PRUPU PPN 9
LESSONS LEAINEM. ... eiiiiieetie ettt ettt ettt ettt e st e s bt e e bt e e s bt e e bt e e sabeesabeeesabeesabeeeabbeesabeeebbeesabeesseeesareenn 9
Terminology and Naming CONVENTIONS.c.uuiiiiiiiiieeciiee e ectte e et e e esree e st e e s sar e e e sabeeeessbaeessnbeeeesnaseeas 10

23] o] Lo} = =T o] o1 TP 11

Abstract

This paper aims to explore the conceptual architecture of FlightGear, an open-source flight
simulator. As an open-source development project, FlightGear has a long history, with many
contributors, and rapidly evolves. Its contributors are divided into 'normal' and 'core’
developers in which core developers have commit rights to the master branch repository and
normal developers do not but can still contribute code. It had to undergo major restructuring to
adapt its architecture to parallel processing-oriented computing. Now, FlightGear utilizes High-
Level Architecture, which divides the simulation into different components. FlightGear focuses
on modularity so as to be customizable to any particular user's preferences, saving size and
resources on the base version of the program.

In terms of system functionality, FlightGear has an FDM Server, which handles the bulk of the
flight dynamics as well as atmospheric and environmental simulation, in addition to multiplayer
sessions. The FDM Client presents users with the input/output interface, and components like
rendering. Both the FDM Client(s) and Server connect to a network via UDP ports, and relay
data to each other. The FDM Server through the network manager will call upon its
components which handle the various aspects of the flight simulation, which are organized to
be modular. Thus, we can say that FlightGear partly utilizes a modified Client-Server model of
architecture. FlightGear relies on its restructured concurrency to operate with speed and
responsiveness, especially concerning the modularized flight simulation components.

Introduction

FlightGear is a free, open-source flight simulator in development since 1997, supported on
multiple OS's including Windows, MacOS, Linux, IRIX, and FreeBSD [1]. FlightGear has been
used in academic research, education, training, and for recreational purposes [1].

FlightGear was originally proposed as an open-source project by developers David Murr, Curt
Olson, Michael Basler, and Eric Korpela in 1996, who were dissatisfied with proprietary flight
simulators, and released to the public their own simulator with open-source volunteers and
resources [1]. FlightGear had its first full release in 2007 and has been in constant development
since then [1]. The base files amount to less than 2GB, which compared to other competing
flight simulators like X-Plane or Microsoft Flight Simulator, which contain 60GB and 120GB of
base files respectively, make FlightGear a much more streamlined application [1] [2] [3].

FlightGear features an atmospheric and environmental physics simulation, including real time
weather patterns. Players can also choose between JSBSim and YASim for flight dynamics, and
engage in multiplayer functionality [1]. The features and their sophistication make FlightGear

favored by the Federal Aviation Administration (FAA), and NASA amongst many other

aeronautics and space industry organizations [1]. Amongst these organizations it is considered
the standard for incorporating into training, modelling, simulation, and other software [1].

Per this report, there are many resources used including general books and published papers on
flight simulators, documentation of FlightGear, and the FlightGear wiki.

Architecture

In this section, FlightGear’s system functionality will be discussed. First part of this section will
go over system functionality including the FDM server and client alongside networking
capabilities, followed by system evolution, data flow and control, concurrency, and finally
division of responsibilities and how that effects workflow.

System Functionality

To address the issues posed by the ‘main-loop’ architecture used in previous versions of the
flight simulator, FlightGear redesigned their architecture to optimize computing power usage
[4]. By creating an environment capable of threading resource intensive tasks, it could much
more easily foster improvements and additional features. This architecture is centered on
dividing the simulator into two primary components: the Flight Dynamics Model (FDM) server
and the client, utilizing a Model-View-Controller (MVC) architecture for increased flexibility and
efficiency [5].

FDM Server

The FDM server performs the main calculations of the flight models and is responsible for the
core simulation tasks, including the computation of flight dynamics and the management of
environmental variables [6]. It now supports parallel processing, allowing for the simulation of
multiple aircraft simultaneously, multiplayer, and shared Al traffic data across sessions [7]. This
server-centric approach enables a scalable and robust simulation environment that can
accommodate complex flight scenarios and interactions within that multiplayer setting.

FDM Client

The FDM client serves as the interface between the user and the simulation by handling
input/output operations as well as rendering the simulation's visual and audio components [6].
As with the previous architecture, these rendering tasks formed the bottleneck for system
performance, so in the new architecture these 1/0 tasks are performed in a separate thread
from the rendering tasks [4]. The client's structure allows for a responsive and immersive
experience, with the capability of displaying detailed and dynamic environments. It handles
communications with the FDM server to reflect real-time changes in the simulation state,
ensuring that user inputs directly influence the flight dynamics [5].

Networking and Multiplayer Capabilities:

The new architecture also supports
multiplayer functionalities, allowing users to FOM Server
interact within a shared simulation
environment [4]. This is possible using efficient
network communication protocols to ensure
consistency and synchronization across
different clients. The system's design allows
for seamless integration of new features, such
as multi-pilot capabilities and Al traffic, Client 1 Clisnt 2

increasing the realism of the simulation
experience [7].

Figure 1: An example of a setup where multiple users can
The new architecture emphasizes the system's inhabit a single aircraft and operate its controls. [4]

robustness and capability of handling multiple

users and complex simulations without compromising performance [4]. This architecture not
only addresses the limitations of the previous designs but also sets a foundation for future
developments, leveraging parallel processing and networked components to offer a complete
and immersive flight simulation experience [4].

System Evolution

FlightGear is a program that evolves quickly due to the nature of how development occurs.
FlightGear is an open-source flight simulator that grows using an open collaboration model,
allowing any developers to contribute to the project. There are two forms of developers, core
developers and open or ‘normal’ developers [5]. The difference between these two are
explained in the Division of Responsibilities section of this report. Where this is applicable to
system evolution is that when a core developer reviews the normal developer’s work, they can
commit the changes to the official version and send out a new patch (i.e. version) [8]. This
approach enforces innovation, diversity, and rapid iteration of code, 3D models,
documentation, and other assets, while assuring that the product stays in top shape and no
errors are committed to the software.

Flight Gear’s system architecture also is built upon a modular design to enhance the
modifiability of the system. Various modules include the aircraft models, scenery databases,
user interface components, etc [9]. Each of the modules are designed to be independent, which
allows any developer to work on specific portions of the code without conflicting with other
components of the project [8]. This modular design in tandem with the open collaboration
creates an efficient dynamic that allows rapid modifications, iterations, and testability.

FlightGear’s comprehensive and accessible documentation helps it succeed with the mass
number of collaborators installing, updating, and troubleshooting the products. The
documentation of the product updates with the software and reflects changes in features,
functionality, and best practices [8]. Other documentation such as support forums, mailing lists,
and chat channels offer additional help to users of the product [8]. These forums allow users to
also post about bugs and participate in providing feedback and testing, improving ongoing
development efforts [8].

Data Flow and Control

v

<>

Figure 2: Diagram of FlightGear's Data Flow and Control Flow [4]

As shown in Figure 2, through the UDP Ports, the FDM server and client connect to a network.
In the network manager, changes can be uploaded to and from one another and allow for
either side to react accordingly.

The input the user gives using the Ul, such as steering the aircraft and pushing various control
buttons on the dashboard, is communicated through the network to the FDM server. Upon
receiving the data, the network manager will call relevant components to make the necessary
updates. Primarily, calculations based on the given input, equations of motion and
aerodynamics will be made [4]. However, audio and visual rendering as well as updating the
scenery outside the user’s aircraft allow for the user to receive confirmation that their inputs

have been registered by FlightGear’s system. These updates will be sent back to the network
manager and from there, the FDM server will update the network and thus the client [4].

Additionally, the system controls various Al systems that act separately to the user’s inputs [7].
One of these is Al traffic, where the scenery is populated with Al controlled vehicle models with
their own traffic schedules that dictate how that Al object behaves [7]. This includes Al aircraft,
both on the ground in airports and in the air, and control of other ground traffic such as cars,
trains, and ships [7]. Other instances of Al systems are the ATC, which simulates
communications between the airport tower and the pilots, and various Al scenarios, such as
weather/turbulence [7]. All these systems add realism to FlightGear and provide training
opportunities to the user so that they can practice safely piloting the aircraft regardless of the
circumstances and what is in their environment.

Having these components act independently from one another instead of one after another in a
large loop allows for partitioning and ensures that any errors or corruption in one component
will not cause problems to the others [4].

Below are some instances of use cases for the system represented through sequence diagrams:

Sequence Diagram - Starting Aircraft

ul

Client Manager FDM Server Network Manager Flight Dynamic Calculator Audio Manager Scenery Manager Rendering Al Object Controlier

|
|
Userlnput() |

T
|
—————— - !
!
!
|

[

|

|

|

_ |
ButtonPress{) e

StartupAircraft()

I | I
| | |
| | |
I | |
[| I
| | |
| | |
I | |
] | I
I

GetEngineSound()
|
< __________________

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|

UpdateAlObjects()

I
|
|
|
|
|
|
|
|
|
|
I
| |
I |
| |
] UpdateDashboardRender() |
| | |
| | I >|i|
<+ -------- t=-=======- A=======-=- [=======
|
l
|
I
|
|
|
|
|
|
|
|
|

Figure 3: Sequence Diagram for Starting Aircraft

Sequence Diagram - In Air Flight

U Cliznt Manager

FDM Server

MNetwaork Manager

Flight Dynamic Calculator

Audio Manager

Scanery Managsr Rendering

Al Object Controller

|
|
| Userlnput() I

MuoveYoke()

= e

|

|

|

|

|
1

|
[
[
[
[
[
[
[
[
[
[
[
|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
|
[
[
|

Figure 4: Sequence Diagram of When Flying Aircraft

Concurrency

| I |
| [[
| [[
| [[
| [[
| [[
| [[
Steer| | | |
> | ! !
o | | |
GetCalculations() | | |
| | [
| [[
""""" | [[
! | | [
GetAudiol) = | | |
| | [
1 [[
iy im---- - | |
| | | [
| UpdateScenery() | = | |
| | [
| | [
t-------- A----=-=-=---- F-====--- |
| I | |
| UpdateRendering() | g |
| | | d
| | |
q--------- - d--------- [-==-=----
| | | |
l UpdateAlObjects() | |
| | | |
| | | [
€ -------- e -----==--- e
| |
| |
€ T | |
| |
| |
| |
| |
| |
| |
| |

—

In the context of flight simulation software such as FlightGear, concurrency plays a pivotal role

in achieving real-time performance and realism essential for an immersive flight simulation

experience. The evolution of processor architecture, notably the reduction in cycle times and

the introduction of multi-core processors, has significantly improved the ability to perform

parallel processing of tasks across different cores, enhancing the speed and efficiency of

simulations [10]. Operating systems further optimize this process by managing data transfers

through mechanisms like Direct Memory Access (DMA), enabling concurrent data handling

alongside ongoing processor operations crucial for maintaining the simulation's real-time

responsiveness [10].

The operating system's scheduler is used for managing multiple processes, focusing on
maximizing throughput and ensuring real-time inputs are prioritized accordingly [10]. Flight
simulation software typically operates under a fixed frame rate, necessitating that all
processing activities, from input acquisition and flight dynamics computations to visual updates,
are completed within each frame [10]. This emphasizes the importance of efficient concurrency
management to avoid processing overruns and ensure timely execution. Distributed computing
also enhances flight simulation by partitioning applications across multiple computers,
potentially improving processing speed proportionally to the number of computers used.
However, challenges arise in managing interconnections and minimizing latency [10].

Within individual computers, the software design embraces multitasking, allowing parallel
execution of tasks using processes and threads managed by the operating system [10]. Threads,
which operate independently but share the same code and data, can be executed on separate
processor cores, enabling parallel execution while ensuring efficient synchronization and data
sharing among them [10]. Synchronization between threads is achieved using semaphores,
ensuring mutual exclusion for shared resources, and controlling the sequencing of threads'
execution to prevent conflicts [10]. Moreover, asynchronous input handling employs threads to
manage input and output operations efficiently, allowing for real-time data acquisition and
immediate response to control inputs, crucial for maintaining the simulation's real-time
performance [10].

Overall, the implementation of concurrency in flight simulation software through improved
processor capabilities, operating system management, distributed computing, and efficient use
of threads and synchronization mechanisms ensures that FlightGear and other simulators can
process complex simulations in real-time. This highlights the importance of concurrency in a
large software system.

Division of Responsibilities

The FlightGear development process and role of volunteers is detailed in the development
portal of the official FlightGear wiki. Participating programmers are separated into two
categories: normal and core developers [5]. Core developers are those who have commit rights
to the master branch of the FlightGear Git repository and make direct contributions to the
source code (i.e. they are the ones who develop FlightGear "core") [5]. Normal developers can
make improvements to the source code, but they need to be reviewed by core developers to be
committed to the main project [5]. These sets of checks and balances make sure that
competent modifications are being made to the project while maintaining quality assurance to
the end application.

The development contribution process is separated into several steps for normal developers.
First, developers are encouraged to fork and clone the repositories from Source Forge that they

7

would want to contribute to so that they can work on those repositories without changing the
main project before the modifications are accepted [8]. The original repositories are established
as an upstream remote that can be pulled into the developer’s local clone [8]. Once that
developer is ready for their work to be accepted, they can submit a merge request, in which a
core developer will check that contribution to fix any issues before merging with the main
repository [8]. After their work is accepted, the developer needs to be responsible for
monitoring the build server, mailing lists, and the forum to check for any issues related to that
developer’s addition [8]. Finally, the developer must pull their changes from the upstream
remote and remove their local branch to push to origin [8].

It is important to note that FlightGear employs High-Level Architecture (HLA), a general-
purpose architecture for distributed computer simulation systems [11]. HLA splits the
simulation into different components called Federates, which interact via a Run-Time
Infrastructure (RTI) [11]. One of the major advantages HLA has over monolithic simulation is
that it provides a framework to allow anyone to create components in FlightGear that are
language flexible (not just C/C++), attracting many developers who may have other languages
of expertise [11]. Since FlightGear mainly relies on volunteers, this is very beneficial for the
project as it attracts a larger quantity and wider variety of programmers to contribute.

All repositories have certain policies and restrictions applied to them, such as software licenses
[12]. All the FlightGear software repositories either use the GNU Public License (GPL) or require
a GPL compatible license [12]. The GNU Public License is a copyleft, free software license [13].
To summarize, Table 1 contains all the relevant repositories and their required software
licenses, taken from the FlightGear policy document and information on the wiki about the git
repositories [12] [9].

Repository Comments License

FlightGear FlightGear Itself GPLV2+

simgear Simulation engine LGPLV2+
FlightGear uses

fgdata All Data used by GPL Compatible
FlightGear

fgaddon SVN containing all GPL Compatible

unofficial flightcraft
Table 1: FlightGear Repositories and their compatible Licenses [11]

Some of these repositories do not necessarily contain code contributions since anyone can
contribute to the open-source project, which can also include assets such as unofficial
flightcraft in the fgaddon repository, FlightGear data in the fgdata repository, and also
contributions to documentation on the FlightGear Wiki itself [12] [14].

Conclusion

To summarize the conceptual structure of FlightGear, the purpose of the system is to accurately
simulate aircraft flight in a way that is open, accessible, and easily modifiable for developers
and non-developers alike. Its own infrastructure, which utilizes a combination of a modified
client-server architecture, HLA, and MVC architecture, reflects this goal [6] [11]. It is in part able
to accomplish this by creating an environment for threading resource intensive tasks. For
example, using a modified Client-Server model of architecture, it utilizes the FDM server for
computing intensive core simulation tasks to accommodate complex flight scenarios even in a
multiplayer setting through the architecture’s networking capabilities. Between client/server
interaction, I/0 and rendering tasks are updated in real time so the simulation is as immersive
and responsive as possible. The components from the client-side that interact with the network
manager are separated so that individual components are partitioned and do not interfere with
each other making modular development and usage easier.

The way in which FlightGear sets up its architecture and policies encourage a large quantity of
developers, a collaborative development environment, and a modifiable project. FlightGear’s
Higher-Level Architecture allows development and contributions to be mostly programming
language agnostic as to attract a large quantity and variety of developers [11]. The
development process itself encourages collaboration between dedicated core developers and
those who only want to contribute to a few components while also assuring quality of code
through its practices. Additionally, the policies of the repositories attached to the project assure
all components are free and open source through GPL compatible licenses, keeping
development open for all [12]. Even for non-programmers, volunteers can contribute and add
their own components and assets such as aircraft to the project, reflecting the goal of a realistic
flight simulator that is open and collaborative in its creation [14].

Lessons Learned

Most of our research was sourced from the FlightGear wiki which is reviewed and maintained
by FlightGear contributors, and this helped us get accurate information on the project’s
architecture and approach to development. One limitation of this approach was that we were
not able to find much information on the FlightGear repository for concurrency specifically, so
for our concurrency section we also consulted books with information on how flight simulators
are developed generally such as D. Allerton’s book “Flight Simulation Software” [10]. Sourcing
books about general flight simulators helped us understand the theory behind flight simulators,
though there could be some missing information on how it uniquely applies to some aspects of
FlightGear. Another limitation of our methodology is that we did not consult information that
would compare in depth different flight simulators such as Microsoft Flight Simulator with

FlightGear. However, it is important to note that some comparisons would be difficult to find
where there is not as much information on the software architecture of more closed projects
like Microsoft Flight Simulator. In the process of learning about FlightGear’s conceptual
architecture, it is apparent that a modular approach to the software architecture and policies of
open-source projects can benefit the product in terms of performance and continued
development. It is suggested that any software projects that want to emulate the open nature
of FlightGear adopt some similar practices that are in the project such as its HLA that allows it
to be code agnostic and allow non-programmers to also contribute assets that programmers
would not have the time to add [11] [14].

Terminology and Naming Conventions

Core Developers: Developers that have commit rights to the official FlightGear Git repo.

Normal Developers: Developers without commit access to the official FlightGear but contribute
code to the project.

Semaphores: a variable or abstract data type used to control access to a common resource by
multiple threads and avoid critical section problems in a concurrent system.

Al: Artificial Intelligence

ATC: Air Traffic Control

DMA: Direct Memory Access

FDM: Frequency-Division Multiplexing
GPL: GNU Public License

- GPLV2(+): GNU Public License Version 2 (and above)
- LGPLV2(+): Library GNU Public License Version 2 (and above)

HLA: Higher Level Architecture
MVC: Model-View-Controller
RTI: Run Time Infrastructure

UDP: User Datagram Protocol

10

Bibliography

[1]

(2]

3]

[4]

(5]

(6]

[7]

8]

[9]

"FlightGear About," FlightGear, [Online]. Available: https://www.flightgear.org/about/.
[Accessed 19 02 2024].

"Microsoft Flight Simulator," Microsoft, [Online]. Available: https://www.xbox.com/en-
US/games/microsoft-flight-simulator. [Accessed 20 February 2024].

"X-Plane," X-Plane, [Online]. Available: https://www.x-plane.com/. [Accessed 20 February
2024].

A. Macleod, A. K. Hardraade, M. Koehne and S. Knoblock, "New FG Architecture,"
[Online]. Available: https://wiki.flightgear.org/w/images/1/1e/New_FG_architecture.pdf.
[Accessed 20 February 2024].

"Understanding the FlightGear development process," [Online]. Available:
https://wiki.flightgear.org/Howto:Understand_the_FlightGear_development_process.
[Accessed 18 February 2024].

"FDM Engine Feature Standardization," [Online]. Available:
https://wiki.flightgear.org/FDM_engine_feature_standardization. [Accessed 20 February
2024].

"Artificial Intelligence," [Online]. Available:
https://wiki.flightgear.org/Artificial_intelligence. [Accessed 14 February 2024].

"Developer Workflow," [Online]. Available:
https://wiki.flightgear.org/Development_workflow. [Accessed 18 February 2024].

"FlightGear Git," FlightGear, [Online]. Available: https://wiki.flightgear.org/FlightGear_Git.
[Accessed 18 February 2024].

[10] D. Allerton, Flight Simulation Software, Hoboken: Wiley, 2023.

[11] "High-Level Architecture," [Online]. Available: https://wiki.flightgear.org/High-

Level_Architecture. [Accessed 18 February 2024].

[12] "FlightGear Policy Document," FlightGear, [Online]. Available:

https://www.flightgear.org/flightgear-policy-document/. [Accessed 18 February 2024].

11

[13] "Various Licenses and Comments about Them," [Online]. Available:
www.gnu.org/licenses/license-list.en.html..

[14] "Volunteer," [Online]. Available: https://wiki.flightgear.org/Volunteer. [Accessed 20
February 2024].

12

